Not yet the new normal

Snapshot for Silicon Valley: updated to add the link to the recording.

Had been asked to do a status report on the Valley for compatriots in Scotland with Christine Esson for the Scottish Business Network insights series..

Here’s the recorded interview https://www.youtube.com/watch?v=poXljpfVNFk

References

The California Consumer Privacy Act, discussed on the China Law blog.

A summary of a representative Venture Capital viewpoint from the point of view of the investors, rather than from founders looking for investment.

Elad Gil’s advice for founders.

Linley Spring Processor Conference Goes Virtual The Linley Group held their conference which gathers good quality marketing information about imminent AI hardware developments on Zoom, to excellent effect. They report 700 part-time attendees, compared to the usual 300 maximum in person for the event. Listening to it it seemed that the quality of technical information imparted was at least as good as it would have been at an in-person event.

Sherwood Partners doing two to five business windups per day. “This is the great unwinding,” Pichinson said. “We don’t know what’s happening, but we do know everything we believed in is changing. Everything we thought to be true may not be true.”

He expects the number of startup companies that he is ending from the coronavirus downturn to exceed the carnage left behind in the dot-com bust.

What I’m seeing isn’t layoffs – what I’m seeing is business continuing, though not business as usual. One company was acquired by a public company for cash, another couple of public companies are being acquired by much bigger companies, another needs advice about splitting off the original technology it started with, with the potential to re-capitalize and convert to a much more sustainable business model while compensating the original investors.

Delivery robots are out on the street in Mountain View

There have now been 100 reported deaths in Santa Clara County attributed to Covid-19 Vehicle traffic continues to be much lighter than before the lock-down; many more people are walking and cycling along the residential streets. We ride and walk for exercise, too.

Juiced E-bike, Trek road bike

Testing, tracing and tracking an outbreak in Seoul, South Korea. Paper It’s not clear when Santa Clara County is going to be able to implement this kind of tracing and follow up; without it removing the lockdown has a high likelihood of raising the case count and death rate again.

Call to action from Jim Yong Kim : social distancing, contact tracing, testing, isolation, and treatment are essential. Massachusetts is getting started on this.

ScaledML 2020 notes

26 – 27 Feb at the Computer History Museum in Mountain View

This was the 5th year of this conference. Matroid, who put it on, pick a useful mixture of academic and industry speakers, from people working at the front edge of getting products using machine learning into early adoption.  The most entertaining talk was from Josh Bloom, on applying ML in astrophysics. The most significant talks were from Jim Keller (Intel) on how Moore’s Law continues, and from Dennis Abts on his 14th chip design, Groq’s Tensor Streaming Processor. 

http://scaledml.org/2020/

——

Oren Etzioni Allen Institute for AI 

Paper https://www.technologyreview.com/s/615264/artificial-intelligence-destroy-civilization-canaries-robot-overlords-take-over-world-ai/ 

———

Matroid  turning research into product

Look for definition and understanding of ‘adequate accuracy’ for the context of the problem

Understand the rate of change of adequate accuracy – predictor of time to develop and investment requirements. Army of annotators available ? 

Can do model compression and optimization to match low capability edge AI chips. 

————-

Megan Kacholia VP engineering Google. https://ai.google/ 

https://www.blog.google/outreach-initiatives/accessibility/impaired-speech-recognition/

Tensor Flow TF 2.1 released Jan 2020 https://github.com/tensorflow/tensorflow/releases

————–

Andrej Karpathy Tesla https://www.tesla.com/autopilotAI 

Aiming for full self driving. Using the fleet (of customers’ cars) for data gathering.

——————

Ilya Sutskever Open AI 

Dactyl robot hand manipulation Rubik’s cube https://openai.com/blog/learning-dexterity/

Musenet for music . AI Dungeon game discussion at https://www.reddit.com/r/AIDungeon/

—————-

Wes McKinney Ursa Labs  forum for discussion https://discuss.ossdata.org/ 

Opensource support model Apache Arrow Looking for Swift and Julia developers

—————-

Savin Goyal Netflix Framework for AI development https://metaflow.org/ opensource

Sandbox, free, at AWS

———–

Panel discussion.  Another framework https://mlflow.org/  MLsys conference 

————–

Posters : Pure Storage;  Logical Clocks (Sweden) ; Samsung Iot chip, no system design

———–

Ion Stoica UC Berkeley  https://rise.cs.berkeley.edu/ 

————

David Aronchick Microsoft Leads open source machine learning at Azure

https://www.davidaronchick.com/  david_aronchick@microsoft.com

Structured schemas required for ML Ops. Design and test discipline for both data and algorithms.

———–

Joshua Bloom UC Berkeley 

https://bids.berkeley.edu/events/physics-machine-learning-workshop

Towards Physics-informed ML Inference In Astrophysics 

Searching for Planet 9   One hot encoding

Physics informed deep learning https://arxiv.org/abs/1711.10561

Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations:  Maziar Raissi, Paris Perdikaris, George Em Karniadakis

Reverse-Engineering Deep ReLU Networks https://arxiv.org/abs/1910.00744

David Rolnick, Konrad P. Kording

——————-

Matei Zaharia Databricks Scaling Machine Learning Development with MLflow 

More ml devtools . Reproducible runs Auto logging to support data versioning

———

Jim Keller Intel 

Moore’s law continues  1000 scalars. Abstraction layers are critically important 

Extreme ultraviolet lithography is the next phase of chip manufacture.

EUV is a step function enables 100x finer printing

Once you have stable data and a stable platform, the platform can evolve from CPU to GPU to special purpose accelerator.

————–

Josh Romero Nvidia Scaling Deep Learning on the Summit Supercomputer 

Used Horovid (Uber) framework for DL training.  Needed hierarchical all reduce 

——–

Peter Mattson Google MLPerf: driving innovation by measuring performance 

Need benchmarks for training, inference, mobile. Hard to get contributors. MLCommons non-profit formed to encourage innovation. People’s Speech dataset aiming for 100k hours of transcribed speech by diverse speakers.

Sean Lie Cerebras Wafer-Scale ML 

——–

Dennis Abts  Ditching the ‘C’ in CPU: Groq’s Tensor Streaming Processor (TM)

https://research.google/people/author36240/

Dataflow in a superlane 220 Mibytes shared SRAM

Memory has an address and a direction 1 Teraop/sec/mmsquared

Deterministic instruction time INT8, FP16 

14th chip.  No arbiter, no replay mechanism, no flow control in chip, no hardware interlocks – orchestrated by the compiler. 

Groq Announces World’s First Architecture Capable of 1,000,000,000,000,000 Operations per Second on a Single Chip

Click to access Groq-Rocks-NNs-Linley-Group-MPR-2020Jan06.pdf

Slides and video are now available at https://info.matroid.com/scaledml-media-archive-preview Matroid ask for an email address in exchange for access.

———–

Understanding the new business of AI

Adding to the agreement and reaction to the useful Andreesen Horowitz post on The New Business of AI from last week ..

Image from the 2017 AI Index, Stanford Institute for Human -centered AI

Reaching the sunlit uplands of AI is going to be rather harder than many of its investors and protagonists have predicted. https://a16z.com/2020/02/16/the-new-business-of-ai-and-how-its-different-from-traditional-software/

In particular, many AI companies have:

  • Lower gross margins due to heavy cloud infrastructure usage and ongoing human support;
  • Scaling challenges due to the thorny problem of edge cases;
  • Weaker defensive moats due to the commoditization of AI models and challenges with data network effects.

Adding a couple of examples to illustrate some of the systems design issues :

Frank Denneman, from VMware, on paralellism used for scaling training models https://frankdenneman.nl/2020/02/19/multi-gpu-and-distributed-deep-learning/

Emily Potyraj, from Pure Storage, on optimizing ECG data layout to improve deep learning training performance. https://towardsdatascience.com/what-format-should-i-store-my-ecg-data-in-for-dl-training-bc808eb64981

All of this points to a continuing requirement for a high degree of skilled problem analysis and systems design in order to make best use of AI/ML . There’s an opportunity for existing services companies to dramatically improve with judicious use of ML/AI .

AI and new jobs

Last year when we were preparing for the AI and ML panel at the Markets Group meeting, we spent a lot of effort to prepare for questions on potential and actual adverse effects – but no-one asked. The audience were institutional investors, many of them managing pension funds for employees, so we really had expected pointed questions about the potential for removal of existing jobs and about how new occupations might arise.

Prompted by a blog post from Timothy Taylor, and quoting from a paper titled ‘The Wrong Kind of AI’ , it seems useful to think “about the future of work as a race between automation and new, labor-intensive tasks. Labor demand has not increased steadily over the last two centuries because of technologies that have made labor more productive in everything. Rather, many new technologies have sought to eliminate labor from tasks in which it previously specialized. All the same, labor has benefited from advances in technology, because other technologies have simultaneously enabled the introduction of new labor-intensive tasks. These new tasks have done more than just reinstate labor as a central input into the production process; they have also played a vital role in productivity growth.”

References

IZA DP No. 12292 Institue of Labor Economics The Wrong Kind of AI?
Artificial Intelligence and the Future of Labor Demand APRIL 2019
Daron Acemoglu MIT and IZA
Pascual Restrepo Boston University

More machine learning – ScaledML

27 – 28 March 2019

The ScaledML conference is growing up; from a Saturday at Stanford to a two day event at the Computer History Museum with sponsors. http://scaledml.org/2019/

Two big new themes emerged

  • Concern for power efficiency (Simon Knowles, Graphcore, talked about Megawatts; Pete Warden, Tensorflow talked about milliwatts and energy harvesting
  • Development platforms – Adam D’Angelo, Quora, was particularly clear on how Quora operate development to efficiently support a small number of good developers

David Paterson gave the first talk on Domain Specific architectures for Neural Networks – an updated version of this talk https://cacm.acm.org/magazines/2018/9/230571-a-domain-specific-architecture-for-deep-neural-networks/fulltext

The roofline performance model is a useful way to visualize comparative performance. For future performance improvements functionally specific architectures are the way forward; this requires both hardware updates (what Google is doing with the TPUs) and improved compiler front and back ends.

Fig 3 from the Domain Specific Architectures paper linked above.

Intel recognizes this trend – Wei Li described the work his team is doing to incorporate domain specific support into Xeon processors. This blog post has the gist of what he presented.

Most of the talks are here on YouTube